The Potential of Natural Pozzolans to be a Class F Fly Ash Replacement in Concrete

Saamiya Seraj, Rachel Cano, Raissa Ferron, Maria Juenger

University of Texas at Austin

MOTIVATION

- Uncertain supply of fly ash in the future due to EPA regulations that propose to classify it as a special waste.
- Air pollution reduction incentives are making power plants switch to coal sources that do not produce good quality Class F fly ash.
- Estimated average annual cost of banning fly ash in the US is \$5.23 billion (ARTBA, 2011).
- Imperative to find alternative SCMs (supplementary cementitious materials) that can provide similar strength and durability benefits to concrete as Class F fly ash.

OUR RESEARCH

- Looks at the performance of natural pozzolans found in US:
 - ASTM C 618 requirements for Class N pozzolan
 - Compression Strength
 - Durability (Alkali Silica Reaction & Sulfate Attack)
 - Fresh State Properties
- 8 different pozzolans used in our research:
 - *Unaltered Volcanic Pozzolans*: Pumice, Perlite, Vitric Ash
 - *Altered Volcanic Pozzolans:* Three Zeolites (1 fine, 2 coarse)
 - Sedimentary Pozzolans: Metakaolin, Shale

POZZOLAN PROPERTIES

- All the pozzolans were rich in silica and alumina, having a SiO₂+Al₂O₃+Fe₂O₃ quantity of over 74%.
- Other than the three zeolites, all the pozzolans passed the ASTM C
 618 requirements for a Class N pozzolan.
- The three zeolites that did not pass the ASTM C 618 mostly failed due to problems with water demand and moisture content.
- Two of the coarser zeolites also had problems with fineness requirement and showed a lower Strength Activity Index (SAI).

ASTM C 618

	$SiO_2 + Al_2O_3 + Fe_2O_3$	Moisture Content	LOI	Fineness	SAI, 7 day	SAI, 28 day	Water Requirement	Passes ASTM C 618?
Pumice-D	82.9	1.5	4.4	2	82	93	104	YES
Perlite-I	84.3	0.6	3.4	2	86	94	100	YES
Metakaolin-D	88.9	0.9	1.0	7	94	108	102	YES
Shale-T	85.7	0.3	0.4	30	72	81	103	YES
Vitric Ash-S	76.9	2.3	5.9	15	72	83	102	YES
Zeolite-Z	78.6	5.1	2.5	0	71	100	116	NO
Zeolite-T	75.2	11.6	4.6	43	47	61	132	NO
Zeolite-A	74.6	4.8	4.8	61	60	64	118	NO
Criteria in ASTM C 618	70 % min	3% max	10% max	34% max	75% min	75% min	115% max	

^{**} Values in red do not meet the ASTM C 618 requirements

FINDING THE RIGHT DOSAGE

- Percentage of SCM replacement in concrete and mortar mixes determined by amount needed to mitigate expansions from ASR.
- Found using ASTM C 1567, the Accelerated Mortar-Bar Test Method for measuring resistance to Alkali Silica Reaction (ASR).
- Most of the mixtures needed an SCM replacement dosage of 25%.
- Exception: Zeolite-A mixture, which needed a 35% dosage

CONCRETE STRENGTH-ASTM C 39

RESISTANCE TO ASR

- Preliminary percentages found using ASTM C 1567, the Accelerated Mortar-Bar Method for measuring ASR resistance.
- Currently, the pozzolans are being tested for resistance to ASR using ASTM C 1293, which uses concrete prisms (3" x 3" x 11 1/4")
- ASTM C 1293 states that if average expansion is less than 0.04% at 2 years, then amount of SCM used is enough to prevent excessive expansion in field concrete from ASR.

ASR CONCRETE PRISM TEST-ASTM C 1293

SULFATE ATTACK

- The procedures from ASTM C 1012 is being used to test the ability of the pozzolans to mitigate expansions from sulfate attack.
- ASTM C 1012 measures the length change of mortar bars (1"x 1"x 11¼" in dimension) submerged in Na₂SO₄ solution.
- According to ACI 201, Guide to Durable Concrete, natural pozzolans can be qualified for sulfate resistance by demonstrating an expansion less than 0.10% in 1 year, using ASTM C 1012.

SULFATE RESISTANCE – ASTM C 1012

FRESH STATE PROPERTIES

Setting Time using a penetrometer (ASTM C 403)

- No significant delay in set time.
- Concrete with SCM had a final set between 4.5 6 hours.
- Control had a final set of 4.5 hours.
- Fly ash had a final set of 5.3 hours.

• Slump (ASTM C 143)

- Target slump was set between 3-5".
- All mixtures able to achieve this with superplasticizer, except for the concrete mixture with Zeolite-Z and Zeolite-T.
- Workability problems with these zeolites were expected:
 - Failed water requirement test from ASTM C 618.
 - Rheological tests on pastes showed high viscosities.

RHEOLOGY FLOW CURVE OF PASTE

RESEARCH IN PROGRESS

- Understanding why one SCM is working better than others
- Linking performance to the physical properties of the SCMs
 - Surface area analysis with BET
 - Finding crystalline content using XRD
- Determining the pozzolanic potential of the SCM
 - Finding the $Ca(OH)_2$ content of pastes using TGA
- Can properties can be modified to enhance performance?
 - Modifying zeolites to improve workability
 - Understanding why modifications improve/deteriorate performance

CONCLUSIONS

- Other than the two coarse zeolites, Zeolite-T and Zeolite-A, all the pozzolans tested can be a suitable replacement for Class F fly ash.
- In terms of *compressive strength*, the best performers were Pumice-D, Metakaolin-D, Shale-T and Zeolite-Z, having strengths higher than or similar to the control concrete at 90 days.
- In terms of resistance to *ASR*, all the pozzolan concrete mixtures are well below the 0.04% expansion limit at 18 months.
- For resistance to *sulfate attack*, the best performers were Pumice-D, Perlite-I, Metakaolin-D and Zeolite-Z, having expansions less than 0.10% at 1 year (Class 2 exposure).
- Zeolite-Z is a good performer, but it has some *workability issues*.